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Introduction 

Parkinson's Disease is a neurodegenerative disorder of unknown etiology associated with 
the loss of the dopaminergic cells in the substantia nigra. The selective neurotoxins MPTP 
and 6-OHDA have been widely used to generate animal models of PD although it is still not 
known how dopaminergic neurons die in response to these toxins. To test the hypothesis 
that MPTP and 6-OHDA induce unique patterns of gene expression in the CNS-derived 
dopaminergic cell line MN9D, DNA micro array analyses is being performed from various 
toxin-treated time points. Both reverse transcription/PCR amplification and western blots 
are being used to verify changes in selected subsets of differentially regulated transcripts. 
Selected transcripts are also being tested for toxin-induced changes in primary cultured 
dopaminergic neurons. Data from both toxin paradigms are being compared with each 
other to identify shared changes in gene expression. These data will also be compared with 
data available from other apoptotic or necrotic models. Just as studies in other model 
systems have uncovered novel signaling pathways, these experiments are also revealing 
unanticipated pathways that contribute to MPP+ and 6-OHDA neurotoxicity. Taken 
together, these large-scale gene expression analyses will provide a wealth of information 
about the role and mode of regulation of genes involved in pathological models of PD. 

Body 

A.       Does the neurotoxin MPP+ differentially regulate sets of genes? 

To test the hypothesis that MPP+ alters gene transcription as part of its neurotoxic program, 
a time course study using cycloheximide to block MPP+ toxicity, was performed. Cells were 
treated with 50 JJ.M MPP+ with 10 |j,M cycloheximide being added for varying periods of 
time. The point at which about 50 % of the cells were rescued by blocking protein synthesis 
was chosen as the best time point at which to harvest RNA. According to Figurel, that time 
point was 9 hours following MPP+ treatment. 

In consultation with experts from our onsite Affymetrix gene chip core facility, we 
subsequently designed our experiments such that a minimum of 3 separate experiments 
were performed in which cells were treated with MPP+ for 9 hours and then harvested for 
RNA preparation at that time point. Cell death was verified in each case by independent 
experiments done on sibling cultures. RNAs from all three experiments were pooled to form 
an RNA resource that would minimize experimental variation. 

RNA sample preparation was done according to protocols devised by Affymetrix to achieve 
the best results, particularly for mammalian cells. Briefly, total RNA was prepared from cells 
using a Qiagen RN-easy kit. Poly (A)+ RNA was prepared from the latter using oligo (de- 
based strategies (Qiagen kit). Two micrograms mRNA was then used to prepare double- 
stranded cDNA using a T7- (dT) primer containing a T7 RNA polymerase site. Biotin- 
labeled complementary RNA was produced using the ENZO Bioarray High Yield transcript 
labeling kit incorporating biotinylated CTP and UTP. Labeled cRNA was then fragmented 
into sizes from approximately 50-100 bp. Ten micrograms of fragmented sample RNA was 
then hybridized to an Affymetrix micro array for 16 hours at 45°C. 



The Division of Laboratory Medicine at Washington University School of Medicine has 
established a DNA array facility based on the Affymetrix GeneChip Platform. These chips 
are available at a discounted fee and the Center provides hybridization, scanning, and 
discounted software services. Investigators provide the labeled and fragmented cRNA for 
hybridization. Because MN9D cells are derived from murine mesencephalon, we utilized the 
mouse gene chips that consist of a 2-chip set containing 11,000 known genes and 800 EST 
clusters. 

Following hybridization, arrays are washed on an Affymetrix fluidics station and stained with 
streptavidin-phycoerythrin and streptavidin R-phycoerythrin (Molecular Probes). Arrays are 
again extensively washed and then scanned on a Hewlett-Packard laser confocal 
GeneArray Scanner. Data obtained was subsequently analyzed using the accompanying 
Affymetrix GeneChip 3.2 software. 

The data obtained for MPP+ is a compiled value from three separate experiments done in 
triplicate as described above. The expression level of each probe set was plotted to 
determine the reproducibility of the array-based hybridization signals and to compare gene 
expression levels by MN9D cells treated with and without MPP+. The ratio of gene intensity 
in toxin-treated cells to that in control samples was used to represent the toxin-mediated 
induction. The reciprocal ratio represented repression. Genes were considered up or 
down-regulated if the fold change was at least 2.0 in individual experiments as well as in 
averaged, triplicated experiments. These limits are in general agreement with most gene 
chip experiments. 

Figure 2 presents an overview of the data obtained for MPP+-treated cells compared to 6- 
OHDA-treated cells at the nine hour time point. Overall, in the case of MPP+, very few 
genes changed at this time point. Mostly there was a general slide in transcriptional 
response, which is in keeping with numerous studies indicating that MPP+ can lead to 
decreases in protein and RNA synthesis. 

Of interest however was the up regulation of the RNA for Chop10. Chop 10 has been 
shown previously to be regulated by a variety of stresses including unfolded protein 
response, growth arrest, DNA damage, amino acid and glucose deprivation, hypoxia, etc. 
The connection with ER stress is of particular interest since Parkin, the gene associated 
with AR-JP, has now been shown to function as an E3 ubiquitin-protein ligase (Shimura et 
al., 2000). Thus loss of Parkin function may lead to the accumulation of substrates that are 
toxic to dopaminergic neurons. Several Parkin interacting proteins have been identified 
based on yeast two-hybrid approaches including Pael-R, a G-protein coupled receptor with 
homology to endothelin receptor type B (Imai et al., 2001). Parkin mutants fail to 
ubiquitinate Pael-R leading to its accumulation and ensuing unfolded protein response/ER 
stress-mediated cell death (Imai et al., 2001). Thus unfolded protein response/ER stress 
may contribute to PD. 

B.       Does the neurotoxin 6-OHDA differentially regulate sets of genes? 

To test the hypothesis that 6-OHDA neurotoxicity alters fundamental patterns of gene 
expression, experiments were conducted exactly as described above for MPP+ (Figures 1, 
2). Data sets obtained from the 6-OHDA experiments are being compared with those 
derived from MPP+ toxicity as well as other neurodegenerative models. 



Because 6-OHDA appeared to induce apoptosis in this model system as well as in primary 
cultured neurons (Oh et al., 1995; Lotharius et al., 1999; Choi et al., 1999), we anticipated 
the identification of functional clusters of neurotoxin-responsive genes that would overlap 
with apoptotic patterns observed in other models. Surprisingly, however, many of the genes 
that were up regulated were again members of the unfolded protein response. Indeed, 
Chop 10 induction was even more pronounced in 6-OHDA treated cells than in MPP+ 
Figure 2). 

C. Verification in MN9D Cells 

To verify induction or repression by an independent method, a subset of the most 
interesting differentially regulated genes were examined by RT/PCR. Because both 
neurotoxins appeared to induce markers of unfolded protein response, we focused on these 
genes first. As shown in Figures 3-5, many markers of this pathway were up regulated in 
response to 6-OHDA treatment including Chop 10. These data support the notion that ER 
stress may play an important component in PD. Interestingly, MPP+ induced far fewer 
markers of this pathway suggesting that it may participate with a subset of ER stress 
response genes. 

To determine whether the effects seen at the transcript level (Figure 4) were also reflected 
at the protein level, identified genes for which antibodies were available were examined for 
changes in protein expression. Briefly, sibling cultures treated with either 6-OHDA or MPP+ 

were harvested at the same points employed for the micro array measurements. Cells were 
lysed in standard protein lysate buffer together with proteolytic inhibitors. Lysates were 
standardized and equal amounts of protein electrophoresed and subsequently 
immunoblotted. Blots were probed with antibodies directed towards the selected subset of 
proteins implicated in ER stress. As shown in Figure 5, many of the transcripts implicated in 
ER stress were also up regulated at the protein level. Moreover, pathways ascribed to this 
response were also activated as evidenced by predicted increases in phosphorylation. 
Taken together these data provide strong evidence for both neurotoxins inducing ER stress 
in this dopaminergic cell line. 

D. Are neurotoxin-mediated changes in gene expression recapitulated in cultured 
dopaminergic neurons? 

To confirm and extend results obtained using the dopaminergic cell line model, we are 
using primary cultures of dopaminergic neurons. The advantages of using this paradigm 
include the ease of preparation and culture manipulation and the well-documented similarity 
in responses (Oh et al., 1995; Lotharius et al., 1999). To verify induction or repression of 
selected subsets of differentially expressed genes in the primary culture model we are using 
immunocytochemistry to visualize tyrosine hydroxylase, a marker for dopaminergic neurons 
together with antibodies for the ER stress proteins identified above. These techniques will 
allow us to confirm relative changes in differentially regulated genes determined by 
expression profiling in our established dopaminergic culture system. Additionally we are 
using western blots of lysates harvested from identical cultures at various time points after 
toxin treatment. Preliminary results indicate that 6-OHDA also induces Chop 10 in primary 
cultures of dopaminergic neurons. Given these broad similarities in responses, it seems 



reasonable to propose that MN9D cells can serve as a homogeneous, renewable resource 
facilitating studies examining toxin-induced changes in gene expression. 

Key Research Accomplishments 

Established time course of toxin-mediated loss of viability together with cycloheximide 
rescue for MPP+ and 6-OHDA. 

Prepared mRNA from normal, 6-OHDA and MPP+-treated dopaminergic cells at chosen 
time point post treatment. 

Determined hybridization patterns of normal and toxin-treated cRNAs using in-house 
GeneChip Facility and Affymetrix 11,000 gene chip set. 

Analyzed gene expression data. 

Verified differential regulation of particular gene subsets using RNA and western blot 
analysis. 

Extended studies to cultured dopaminergic neurons. 

Discovered that both MPP+ and 6-OHDA induce markers of ER stress. 

Reportable Outcomes 

An abstract describing these studies will be presented at the Society for Neuroscience 
Annual Meeting. 

Data obtained from these experiments will be submitted and shared via the guidelines 
provided by the National Center for Biotechnology Information Expression Omnibus. 

These studies are being prepared for publication. 

Conclusions 

The central hypothesis of these studies is that changes in gene expression underlie much of 
the damage that ultimately leads to the death of dopaminergic neurons after treatment with 
6-OHDA or MPP+.   Using DNA micro array technology we determined that both of these 
neurotoxins induce ER stress although not to the same degree. Identification of key genetic 
components of this response may suggest new points of intervention. Taken together, these 
experiments will help clarify the molecular mechanisms associated with 6-OHDA and MPP+ 

toxicity and might aid in developing novel therapeutic avenues to pursue relevant to PD. 
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Figure 3A 
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Figure 4A 
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